
A

5
NRL Report 8284

Electromagnetic Scattering Patterns
from Sinusoidal Surfaces

A.K. JORDAN AND R.H. LANG

Aerospace Systems Branch
Space Systems Division

April 10, 1979

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release. distribution unlimited.

, ,I 'etL-X_-

or



SECUflITY CLASSIFICATION OF THIS PAGE (o.en Dat Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 8284 l,
4. TITLE (end Subflrle) 5. TYPE OF REPORT 8 PERIOD COVERED

An interim report on one phase
ELECTROMAGNETIC SCATTERING PATTERNS of a continuing NRL problem
FROM SINUSOIDAL SURFACES 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(e)

Arthur K. Jordan and Roger H. Lang*

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Naval Research Laboratory . W

Space Systems Division NRL Problem R07-40
Washington, D.C. 20375

II. CONTROLLiNG OFFICE NAME AND ADDRESS 12. REPORT DATE

April 10, 1979
13. NUMBER OF PAGES

20
14. MONITORING AGENCY NAME & ADDRESS(II different from Controltlng Office) IS. SECURIT'V CLASS. (of thi report)

Unclassified
ISa. DECLASSIFICATION/OOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the betrect entered In Block 20. If difterent rom Report)

IS. SUPPLEMENTARY NOTES

*Also, Department of Electrical Engineering and Computer Science, George Washington University,
Washington, D.C.

19. KEY WORDS (Continue on reveree dide if neceenery nd Identify by block number)

Bragg scattering Rough-surface scattering
Electromagnetic wave scattering Scattering patterns
Exact representation Sinusoidal surfaces
Radar scattering

o n u- -- -- .t.OfCfU or' ree _. --------- -- ___ _ v..- __ -A C nuoo.rj
In this paper we present an analysis and calculation of scattering patterns from sinusoidal

surfaces. An exact space-harmonic representation is used for the field on the surface and, as a re-
sult, the calculation includes the effects of shadowing, diffraction, and multiple scattering. An
asymptotic evaluation has been employed to obtain an exact expression for the scattering pattern
as a product of the space-harmonic scattering coefficients times the corresponding pattern functions.
The formula obtained has been simplified for illuminated areas that are many wavelengths long and

(Continued)
FORM i-sDDI JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

S/N 0102-LF-014.6601
i SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

MU.



SECURITY CLASSIFICATION OF THIS PAGE (When DOaf Enter-d)

20. ABSTRACT (Continued)
plotted for a variety of surface parameters. The present method for scattering-pattern calculations
can be considered to be complementary to methods using physical-optics and point-matching tech-
niques. In addition to presenting the scattering-pattern calculations, the report includes the com-
putation of the exact Bragg backscattering amplitudes and compares them to their Rayleigh ap-
proximations.

ii
SECURITY CLASSIFICATION OF THIS PAGE(Whn Date Entered)



CONTENTS

INTRODUCTION .................................................. 1

REPRESENTATION OF THE ELECTROMAGNETIC FIELD ............................................. 2

CALCULATION OF THE SCATTERING PATTERNS .................................................. 6

DISCUSSION ................................................. 14

ACKNOWLEDGMENTS ................................................. 15

REFERENCES .................................................. 15

iii



ELECTROMAGNETIC SCATTERING PATTERNS
FROM SINUSOIDAL SURFACES

INTRODUCTION

Electromagnetic waves that are scattered from rough surfaces have a characteristic depen-
dence on the observation angle. In addition to scattering at the specular angle, which is charac-
teristic of reflection from a smooth plane, these waves also scatter at many different angles, due
to the rough nonplanar nature of the surface. In this paper we present an analysis and calcula-
tion of scattering patterns from a sinusoidal surface, which is the prototype of a periodic rough
surface. An exact representation of the electromagnetic field is used to calculate scattering pat-
terns from a finite illuminated area of the surface. A motivation for this study has been the
investigation of the effects of sea clutter on radar target identification procedures.

Scattering from rough surfaces has been calculated with the space-harmonic representation
which expresses the scattered field as a discrete sum of space harmonics (plane waves). The
scattering coefficient associated with each space harmonic is calculated after the application of
an exact boundary condition on the surface. The formulation which we use was provided by
DeSanto [1] and is similar to the analysis by Uretsky [2]. Direct numerical solution of the in-
tegral equation for the surface current has been made by Zaki and Neureuther [3] and by Tong
and Senior [4]. Whitman and Schwering [5] have independently obtained a formulation similar
to that of DeSanto [11 and furthermore have compared their calculations with the direct numer-
ical solutions cited above. Waterman [6] has calculated the scattering coefficients by solving the
matrix equations for the surface fields.

In principle, the space-harmonic representation is exact; however, simple approximate
representations for the scattering coefficients can be obtained if the perturbation (Rayleigh-
Rice) approximation [7] is used. This procedure has been used by Valenzuela [8], Wright [91,
Barrick [10], and Rosich and Wait [11] to explain the phenomenon of Bragg scattering of mi-
crowaves from slightly rough surfaces such as the ocean.

The physical-optics (Kirchhoff) approximation is an alternate method, which assumes that
the surface field is equivalent to the field which would be induced on a local tangent plane.
The scattered field is found by integration over the illuminated area. Scattered fields have been
calculated with this method by Beckmann and Spizzichino [12] and Senior [13]. Lentz [141 in
particular has compared scattering patterns calculated with the physical-optics method, direct
numerical evaluation of the integrals, and perturbation methods. Backscattering from compo-
site rough surfaces has been analyzed by Fung and Chan [15]. Reviews of the methods which
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have been applied to calculate scattering from random rough surfaces have been published by
Valenzuela [161, Shmelev [171, and Beckmann and Spizzichino 112].

REPRESENTATION OF THE ELECTROMAGNETIC FIELD

The electromagnetic field scattered from a sinusoidal surface is represented by a superpo-
sition of plane waves which consists of a discrete spectrum of space harmonics. The analysis is
briefly summarized here in order to define our notation and to display the working formulas.

The electromagnetic field is assumed to be horizontally polarized so that the plane of in-
cidence is the x-z plane and the E-field is parallel to the y-axis: E = Y + (x, z) with 5 being a
unit vector in the y direction. The analysis for vertically polarized fields proceeds similarly [1].
The total field amplitude q(xz) above the z = 0 plane is composed of the incident and scat-
tered field amplitudes

0(x,z) = tI0 (XsZ) + 0"(XZ), Z > 0. (1)

The spatial'dependence of the incident plane wave is

qi0(x, z) = eik(cz0 FEZ) z> 0, (2)

where k = 2ir/X is the wavenumber and a0 = sin 0 0,lB = cos 0 . The space-harmonic
representation of the scattered field is

s (x, z) = I A, e' (anx nZ) z > 0 (3)
n--X

where A, is the scattering coefficient of the nth space harmonic, an = sin 0f , f3n = cos 0 , and
fin is the scattering angle of the nth space harmonic.

The profile s (x) of the surface shown in Fig. 1 is a sinusoid with period I and roughness
amplitude d.

s(x) =-2 d 1+ cos 2 i xi. (4)

Due to the periodicity of the boundary-value problem,

an = a, + nA, n = ±1, ±2, ... , (5)

where A = X/1, so that

p = J o Im (a') > 0, (6)

is complex in general. The scattering coefficient A, can be calculated by applying Green's
theorem with the Dirichlet boundary condition on s(x),

.p[x, s(x)I = 0, (7)

to obtain the integral equation

-f Go d- do 0,O (8)
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Fig. I - Plane-wave scattering by a sinusoidal surface s (x)

where

G' = eik(± 9 0z- acx) (9)

,u is the arc length along the contour C of Fig. 1, and n is the inward-drawn normal. The in-
tegral is evaluated along the contour C by using only the assumption that AO/lan is periodic, so
that the Rayleigh hypothesis [181 is not used. The results are [1]

Am = - i mteiTI|J.(T.+) + I anJm.-n(T.)J m = 0, 1, ±2, (10)

where the a, are the solutions of the set of equations
J. (T m) + A, a, n J-n (T ) = O. m = il 1,+2,...,(1

n*0

Jm (r ±) is the mth-order Bessel function, T,= A(,13B, ± m), and A - ird/k. The a, are the
coefficients of the Fourier expansion of the surface currents and thus may be called surface
current amplitudes. The usual Rayleigh amplitude approximation is found by setting an = 0 for
all n • 0 in Eq. (10).

The infinite set of linear equations (11) can be solved numerically for the a,,, n = + 1,
± 2, ... , by symmetrically truncating the system at an order Mand solving the resulting 2M-
order matrix equation; this technique is known as the method of reduction. However, as has
been pointed out by Holford [19], the usual techniques for showing that the method of reduc-
tion converges cannot be employed unless the system of equations (11) can be represented in
matrix form as (I + J) * a = 0, where I is the identity matrix, 0 is the zero vector, a is the
vector of the unknown surface current amplitudes [an), and J is a matrix having a bounded
norm. It can be shown for our case that the norm of J is not bounded and thus we cannot em-
ploy standard theory to guarantee convergence.

Confidence in our numerical method for solving the set of equations (11) for the surface
current amplitudes was established by employing two criteria:

3



JORDAN AND LANG

(i) Conservation of energy. The normalized energy density in the nth space harmonic at
the plane z = z0 > 0 is

I R,12 =JA 1An2E.(2IR,,j3,0 (12)

Since the total incident energy density was normalized, conservation of energy in the plane
z = z, requires that

J 1,2 Dic()|d .(13)
The energy conservation criterion which we compute is

lim I I- IIR, (M)12 | = lim eM = 0, (14)
M-°° nEP M-

where Rn (M) means the approximation to R, obtained when the (a,) are computed after trun-
cating the set of equations (11) at order M. The sum is only over the set of propagating modes
P = {n:Im (,,) = 0}, since the set of evanescent modes E = (n:Im (jan) > 0) does not contri-
bute to the radiated energy. However, the calculation of the set of surface current amplitudes
(a,} from the linear equations (11) requires both sets P and E, since the near-field distribution

of the total energy among the various space harmonics is influenced by the evanescent modes.
These modes include such effects as shadowing, diffraction, and multiple scattering, and will
influence the values of the scattering coefficients so that including more space harmonics as
M-00 will increase the accuracy of the (a,, and also the (Aj. The energy-conservation errors
eM for several illustrative examples are given in Table 1 together with the corresponding matrix
orders 2M for both the Rayleigh approximation and the exact representation.

Table 1 - Parameters for Scattering-Pattern Calculations

(ii) Stability of matrix solutions. The complex values of a symmetric subset of the sur-
face current amplitudes {a,} should stabilize with increasing matrix size 2M for a given set of
parameters A, A, 00. In all cases which we examined, the energy-conservation and current-
stabilization criteria were compatible.

4

Energy conservation
Pertur- Physical- No. of Matrix error CM

Example A A a- 0 bation Optics Propagat- Order
(deg) Condition Condition ing Modes 2M Rayleigh Exact

(Eq. (18)) (Eq. (19)) approx. represent.

1 0.40 2.356 0.942 45 0.555 1.234 5 28 0.631 8.58 x 10-8

2 0.1013.00 0.30 45 0.555 992.96 20 36 0.125 8.88 x lo-16

3 afi 1.50 2.121 45 0.555 1.914 2 22 0.656 1.10 x 10-6

4 P7 1.11 0.785 45 0.555 0.432 3 18 0.476 2.71 x lo-8

5 0.40 2.356 0.942 11.536 0.400 23.98 6 30 2.95 x 10 7 1.66 x 10-9
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The numerical examples summarized in Table 1 were chosen to demonstrate several in-
teresting scattering phenomena and to compare our results with previously published results.
The table also serves to relate the scattering patterns of the next section with the analysis of the
scattering coefficients in the present section. We have chosen three of the examples to demon-
strate two phenomena whose space-harmonic representations have been extensively studied,
but which have not been related to the corresponding scattering patterns. The first of these
phenomena is nth order resonant Bragg backscattering. The Bragg angles 0

Bn are found from
Eq. (5) with a,, = -a%,

OB, = sinr iA | 2| n = -1, -2, (15)

The second phenomenon is anomalous behavior in the scattering coefficients which occurs at
the Rayleigh-Wood angles, Own = - arc sin (n A ± 1) [201.

The examples were also chosen to demonstrate the accuracy of our calculations for
profiles whose parameters exceed the conditions for two previously-used approximations, which
are

(i) Perturbation (Rayleigh-Rice) approximation. A surface is "slightly rough" if both its
maximum slope and its roughness amplitude are small enough. The condition on the slope has
been obtained by Millar [18], who showed that the Rayleigh hypothesis is satisfied if the max-
imum slope of a sinusoidal surface

d W rd A A, (16)
max

satisfies the condition

0.448 > am. (17)

In addition, if the roughness amplitude is small enough, e.g.

A < (18)
8cos0,(

then perturbation methods can be used to calculate the reflection coefficients Rn [7]

(ii) Physical-optics (Kirchhoff) approximation. Beckmann and Spizzichino ([121, Eq.
(4.3.11)) have shown that the physical-optics approximation can be applied to a sinusoidal sur-
face if no shadowing occurs and if the minimum radius of curvature is large enough; in our no-
tation,

1 << A3 A cos (O,, + arc tan AA). (19)
Al A

Neither approximation was used in the derivation of the scattering coefficients (Eq. (10)) and,
as shown in Table 1, which lists the values of the right-hand sides of Eqs. (17), (18), and (19),
the energy-conservation criterion is satisfied by surfaces that exceed these conditions, if the ex-
act representation is used.
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Example 1 is similar to an example of Whitman and Schwering ([51, Fig. 3) and we have
verified their calculations. Both the perturbation and physical-optics conditions are exceeded.

Example 2 is similar to an example of Beckmann and Spizzichino ((121, Fig. 4.7) and
compares the space-harmonic with the physical-optics calculations. Since A is small there are
many propagating modes (20 in this case); although the energy-conservation criterion is
satisfied here, the space-harmonic representation will become unwieldy for A < < I and the
physical-optics method will be more appropriate for those cases where the radius of curvature is
large.

Example 3 demonstrates first-order Bragg backscattering and Example 4 demonstrates
second-order Bragg backscattering for surfaces that exceed the "slightly-rough" conditions of
Eqs. (17) and (18).

Example 5 demonstrates the Rayleigh-Wood anomalies. The incidence angle of Example
1 has been adjusted so that 02 = + 90 0 and 0_3 = - 90 0; 0-1 is a first-order Bragg backscatter-
ing angle. Although the energy-conservation error suggests that the Rayleigh approximation is
somewhat apocryphal, the exact representation seems valid.

Because of the interest in radar backscatter, we have used our technique to investigate the
behavior of the Bragg backscattering amplitude R . Plots of %IRJ ; as a function of
the normalized roughness amplitude A are shown in Fig. 2 for several values of 0,. It is seen
that for small values of A the Bragg backscattering amplitude depends linearly on A, which
agrees with the predictions of first-order perturbation theory [8]. For larger values of A and an-
gles that are not too close to grazing, the curves tend to follow an oscillatory pattern. As the an-
gle of incidence is increased toward grazing, the amplitude of the oscillation tends to zero and
the curves appear to saturate. In addition, the Rayleigh approximations to the Bragg back-
scattering amplitudes have been plotted. They depart significantly from the exact representa-
tion for surface slopes greater than one. The Rayleigh approximations also exhibit the
"Brewster-angle effect" when the backscattered amplitudes vanish at the zeros of the
corresponding Bessel functions.

CALCULATION OF THE SCATTERING PATTERNS

Scattering patterns from sinusoidal surfaces can be calculated if the scattered fields are
known on a finite illuminated area of the surface. Here a scattering pattern is defined as the
graph of the scattered electromagnetic energy density as a function of the observation angle. In
general, the incident electromagnetic field has a spherical wavefront due to a point source at a
finite distance. For numerical simplicity, we will use an approximate calculation of scattering
patterns with an incident beam of plane waves; the implications of this approximation will be
discussed in the next section.

The incident field has a finite beamwidth, as shown in Fig. 3, and can be represented in
the z = 0 plane by a continuum of plane waves

0p (xI 0) = I^ B(a,) e ikx deao, (20)

6



NRL REPORT 8284

p0.6 45 B 0

~0.5-

0.4

0.1I

0 
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

Fig. 2-Bragg backscattering amplitude Vf/R7T07. as a function of roughness parameter A. Solid curves
correspond to the exact representation, dashed curves correspond to the Rayleigh approximation. The Bragg
backscattering angles 0

B1 are defined by Eq. (15).

where the Fourier components of if ,(x, 0) are

B(a,) = 1 f O(x, 0) e-ikaox dx. (21)

The resultant scattered field can be represented as a superposition of scattered space harmonics,

0sC (x, z) = f B (a,) DIS, (x, z; a,) da0, (22)

where tftsc(x, z; a,) is the scattered-field amplitude due to a unit amplitude plane wave incident
upon the surface with a direction cosine a,. If the expression for P+c given by Eq. (3) is used
in Eq. (22), the scattered field is found to be

sc (X, Z) = Din) (X, Z), (23)

where

Ds (nX z) = f. + B(an) R,(a 0) e z) da. (24)

By a change of variables

7
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an =a, + nA, da, = daI (25)

this becomes

,p In I (x, z) = |', B(an - nA)R,(a, - n A) e ik (ax +,nz) dan . (26)

Fig. 3-Finite beam incident upon a sinusoidal
surface

This integral can be evaluated for large r = x (far field) by the method of steepest des-
cents [211 by transforming a, to the complex-angle plane:

an = sin wn, f3n =cos wn,

x = r sin 0, z =rcos0,

ax +P3,,z = r COS(w - 0),

da, = cos w, dwn.

Equation (26) becomes

q, I) (x, z) = f B (sin wn -n A) R, (sin wn -n A) e )krcosIwn dwn, (27)

where T is the contour shown in Fig. 4. Since BR, is independent of r, the relevant saddle
point for this integral is found from the condition

d cos(w,,-0) = 0,
dw,,

so that

Wn =0.

(28)

(29)

8
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Im w,

T -, -~ - e - R e w ,,

SDP

Fig. 4-Complex angle plane with contour of integra-
tion Tand steepest descent path SDP

If the integral is asymptotically evaluated for large r along the steepest descent path SDP, we
obtain

s(n) (x, z)= 2/7B(sin0-nA)R, (sin0-nA) ei(kr11 4 ) |1 +01 oIJ, (30)

for all n. The scattering pattern S(0) can be calculated directly by using the tp(n) in the far
field:

S(0) = lim | £'i) 1 s f | sc, (31)
r- I ;PEP I ( nEP

where q means complex conjugate of 4i.

In principle it is now possible to compute S(O) explicitly for -7r/2 < 0 <7r/2. However,
an examination of Eq. (30) shows that Rn will be needed for a large number of incidence an-
gles, making the computation of one scattering pattern quite lengthy. Equation (30) can be
simplified to avoid this difficulty for illuminations which are many wavelengths wide. We con-
sider the following nonuniform beam illumination:

t4((xwz) = W(x/L) eik(aox oz) (32)

with

W(x/L) = 0, IxI > L/2.

Here W(x/L) is a slowly varying function across the width of the incident beam. By using Eq.
(32) in Eq. (21) and defining the Fourier transform of Was

Q(') = W W(x) eix dx, (33)

we find

B (a) =LQ [kL (sin 0-a)a],* (34)
For example, if a constant illumination is assumed, i.e.,

W(x/L) = 1, JxJ < L/2, (35)

9
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then

sinkL -
Q (kL a)- ke./2 '(36)

which becomes sharply peaked for large kL. This can be shown to be true for an arbitrary il-
lumination when W is well behaved.

Equation (34) can now be substituted in Eq. (30) to obtain

+(")(r) - 27 LQ (kL (sin 0- sin 0,- nA)) R, (sin 0- nA) e i(kr - r/4), (37)

which expresses the space-harmonic amplitude as a product of the corresponding scattering
coefficient R. and the pattern function Q. Since sin 0, - sin 0, + n A, this becomes

'i4(n) (r) 2- r LQ (kL (sing-sine,)) R. (sino0-nA) ei(kr - /4). (38)

When kL is large, Q becomes sharply peaked about 0 = 0,. Thus if R, is not too rapidly vary-
ing near 0= n0,, we can replace the sin0 in the argument of R, by sin0". Then using the grat-
ing equation (5), we find

+(n)(r) - 27r LQ(kL(sin0 - sin0,)) Rn (sino) eI(kr-7rl4), nEP. (39)

We note first that now the R, are only required at the incidence angle 00, and second that only
the set P is needed since the evanescent modes do not contribute. They do not contribute
since 0, is imaginary for n EE and the absolute value of the argument of Q, i.e.
I kL (sin0 - sinG,) 1, is always large for large kL. The scattering pattern is calculated by using
Eq. (39) in Eq. (31):

S(0) = Q (kL (sin0 - sino,,)) Rn (sino,)I x |lnjQ (kL (sin.-sinn)) kn (sino) (40)
nEP [nEP I

Plots of S(O) vs 0 are shown in Figs. 5 to 10 corresponding to the examples of Table 1. In
general a major peak is located at the scattering angle for each propagating space harmonic.
The beamwidth OQn of each major peak is found from the width of the principal maximum of
the pattern function:

U (sin(O, + OQ) - sinGn) = Ir. (41)

For A << 1, this becomes

OQn~ AOT (42)
cos0, (2

If the major peaks do not interfere to a large extent, the peak values can be related to the
corresponding R,, to within a normalization constant.

10
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0 (DEGREES)-

Fig. 5-Scattering pattern corresponding to Example 1:
A=0.40, A=2.356, O,=45 °, L/x = 30

-90.0 -60.0 -30.0 0.0 30.0 60.0

0 (DEGREES)-

Fig. 6-Scattering pattern corresponding to Example 2:
A=0.10, A=3.00. O~ =45 0,L/x=30
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m

E -40.0

cnID

0 (DEGREES) -

Fig. 7-Scattering pattern corresponding to Example 2: L/X = 100

E -40.0

-60.0

-80.0
-90.0 -60.0 -30.0 0.0 30.0 60.0

0 (DEGREES)-

Fig. 8-Scattering pattern for first-order Bragg backscatter, Example 3:
A = J2,A=1.50, 0,=45'^ L/X=30
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0 (DEGREES)-

Fig. 9-Scattering pattern for second-order Bragg backscatter, Example 4:

A=-22, A=1.110, Ho =45 °. L/X=30

0.0
6 (DEGREES)-

90.0

Fig. 10-Scattering pattern corresponding to Example 5: A=0.40, A=2.356,
0o=11.536-, X=30. The estimated pattern close to the Rayleigh-Wood angles is

represented by dashed lines.
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DISCUSSION

The scattering patterns were calculated by using the formulation (40) in terms of products
of space-harmonic scattering coefficients with the corresponding pattern functions. The exam-
ples of Table 1 were considered for these calculations.

Figure 5, which corresponds to Example 1, shows five widely separated peaks whose loca-
tions agree with the corresponding space-harmonic angles and whose peak values are propor-
tional to the corresponding reflection coefficients. The scattering lobe structure around each
peak is determined by the corresponding pattern function.

Figures 6 and 7, which correspond to Example 2, show the effects of interference between
several closely spaced space harmonics. Although there exist 20 propagating space harmonics,
there are only 13 clearly discernible scattering peaks. The values of the peaks are different
from the previously published results since we used the exact representation of the electromag-
netic field. In addition, scattering patterns have been plotted for two different illuminated
widths, LIX = 30 in Fig. 6 and LIX = 100 in Fig. 7, to demonstrate the effects of different
pattern functions.

Figures 8 and 9, which correspond to Examples 3 and 4, relate the specularly reflected
peak with the first- or second-order Bragg backscattered peak, since for these cases the space
harmonics are widely separated.

The scattering pattern for Example 5 is partially presented in Fig. 10 since the approxima-
tion (39) is not entirely valid at the Rayleigh-Wood angles; however, it is valid at the remaining
scattering angles.

The numerically economical assumption of calculating the scattering coefficients only at
the incidence angle 0 = 0S can be estimated to first order. This is done by expanding
R, (sinG - n A) in a Taylor series about 0 = 0H:

R (sinO-nA) = R,(sin0O) + l 0 ( - 0") + 0((0_0o)2)' (43)
duo

or

R,(sinO-nA) :z R,(sin9O) [1+o81],

where 81 is the first-order estimate of the error made by replacing 0 by 0H in Eq. (38):

(I-fJO) d R, (sing 0 ) n E P. (44)
R,(sinO,) doP

To ensure that the approximation reproduces at least the major lobe associated with each
space harmonic in the scattering pattern, we require that 81 << 1 for 10 -0S0 < OQn, or

1 d R, (sinOg) < <<I, nEP, (45)
2 R (sinGO) dO<

where the beamwidth OJQn is calculated from Eq. (41). If R, and its first derivative are bounded

14
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and nonzero, then keeping OQn sufficiently small will ensure that the error is small. However, if

the incident wave is grazing along the plane z =0 , [i.e. 0 = 2-| or if one of the scattered space

harmonics is grazing with On = ± -- (i.e., a Rayleigh-Wood anomaly appears), thenn 2
Rn(sinO) =0 and the error is unbounded. (It can also be shown that d Rn (sing0 ) does not

dO,
become small in both cases.) Thus the approximate expression (39) does not accurately
represent the scattering pattern for grazing incidence or at a Rayleigh-Wood angle.

When the approximation (39) can no longer be used because R,(sin 00) is rapidly vary-
ing, the Rn(sin 0-nA) must be calculated directly. To do this, we partition the angular interval
-7r/2 < 0 < ir/2 into M-1 subintervals which in turn define the angles Om, m=I, ... M The
equivalent incidence angles are now defined by sin 6omn = sin 0 m - n A, so that the space-
harmonic scattering coefficients R,(sin Oomd) must now be calculated for equivalent incidence
angles defined for each m and n. However, for certain m and n, I sin Om - n A I > 1, which
correspond to imaginary angles of incidence or incident evanescent waves. Thus, a nonpro-
pagating incident wave can excite a propagating space harmonic.

The space harmonics excited by evanescent waves are due to the complete specification of
the incident beam at the surface. This complete specification includes evanescent waves which
will couple directly into the surface without attenuation and, as a result, must be included in
our calculations. If the source had been placed so that the surface would be in its far field, then
evanescent waves excited by the source would be negligible at the surface.

Our method for scattering-pattern calculations can be compared to methods similar to
those discussed in Lentz [141. As was indicated there, point-matching techniques require
several points for each electromagnetic wavelength of the illuminated area and thus are usually
limited by computer storage to relatively short illuminated lengths (<60 A). The present
method, due to the treatment of the pattern functions associated with each scattered space har-
monic, does not have this limitation. However, it is limited to relatively few (< 50) scattered
space harmonics and thus can be considered complementary to methods using the physical-
optics approximation and point-matching techniques.

ACKNOWLEDGMENTS

The authors gratefully acknowledge several informative discussions with G. Whitman, Bell
Telephone Laboratory, and J. DeSanto, N. Guinard, G. Valenzuela, and J. Wright, Naval
Research Laboratory. The computer plots and Fortran programming were competently com-
pleted by Mrs. L. T. Lin.

REFERENCES

1. J.A. DeSanto, "Scattering From a Sinusoid: Derivation of Linear Equations for the Field
Amplitudes," J. Acoust. Soc. Am., 57, pp. 1195-1197, 1975.

15



JORDAN AND LANG

2. J.L. Uretsky, "The Scattering of Plane Waves From Periodic Surfaces," Ann. Phys. (New
York), 33, pp. 400-427, 1965.

3. K.A. Zaki and A.R. Neureuther, "Scattering From a Perfectly Conducting Surface With a
Sinusoidal Height Profile: TE Polarization," IEEE Trans. Antennas and Propag., AP-19,
pp. 208-214, 1971.

4. T.C.H. Tong and T.B.A. Senior, "Scattering of Electromagnetic Waves by a Periodic Sur-
face With Arbitrary Profile," Univ. of Mich. Rad. Lab., Sci. Rept. No. 13, AFCRL-72-
0258; N.T.I.S., AD747491, 1972.

5. G. Whitman, and F. Schwering, "Scattering by Periodic Metal Surfaces With Sinusoidal
Height Profiles - a Theoretical Approach," IEEE Trans. Antennas and Propag., AP-25,
pp. 869-876, 1977.

6. P.C. Waterman, "Scattering by Periodic Surfaces," J. Acoust. Soc. Am., 57, pp. 791-802,
1975.

7. S.O. Rice, "Reflection of Electromagnetic Waves from Slightly Rough Surfaces," Coin-
mun. Pure Appl. Math., 4, pp. 351-378, 1951.

8. G.R. Valenzuela, "Scattering of Electromagnetic Waves From a Tilted, Slightly Rough
Surface," Radio Sci. 3, pp. 1057-1066, 1968.

9. J.W. Wright, "Backscattering From Capillary Waves With Application to Sea Clutter,"
IEEE Trans. Antennas and Propag., AP-14, pp. 749-754, 1966.

10. D.E. Barrick, "First-Order Theory and Analysis of MF/HF/VHF Scatter From the Sea,"
IEEE Trans. Antennas and Propag., AP-20, pp. 2-10, 1972.

11. R.K. Rosich, and J.R. Wait, "A General Perturbation Solution for Reflection From Two-
Dimensional Periodic Surfaces," Radio Sci., 12, pp. 719-729, 1977.

12. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Sur-
faces, Macmillan Co., New York, 1963.

13. T.B.A. Senior, "The Scattering of Electromagnetic Waves by a Corrugated Sheet, Can. J.
Phys., 37, pp. 787-797, correction, p. 1572, 1959.

14. R.R. Lentz, "A Numerical Study of Electromagnetic Scattering From Ocean-Like Sur-
faces," Radio Sci., 9, pp. 1139-1146, 1974.

15. A.K. Fung and H.L. Chan, "Backscattering of Waves by Composite Rough Surfaces,"
IEEE Trans. Antennas Propag., AP-17, pp. 590-597, 1969.

16



NRL REPORT 8284

16. G.R. Valenzuela, "Theories for the Interaction of Electromagnetic and Ocean Waves - a

Review," Boundary-Layer Meteorology, 13, pp. 61-85, 1978. _

17. A.B. Shmelev, "Wave Scattering by Statistically Uneven Surfaces," Soviet Physics -

Uspekhi, 15, pp. 173-183, 1972.

18. R.F. Millar, "The Rayleigh Hypothesis and a Related Least-Squares Solution to Scattering

Problems for Periodic Surfaces and Other Scatterers," Radio Sci., 8, pp. 785-796, 1973.

19. R.L. Holford, "Scattering of Sound Waves at a Periodic Pressure-Release Surface: an Ex-

act Solution," Bell Tel. Labs. Tech. Rep., Whippany, N.J., 1971.

20. A. Hessel and A.A. Oliner, "A New Theory of Wood's Anomalies on Optical Gratings,"

Appl. Optics, 4, pp. 1275-1297, 1965.

21. L.B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Chap. 5, Prentice-Hall,

Englewood Cliffs, N. J., 1973.

17


